
Y2K bug fixing and testing should include the leap day period have seriousJan. 1 2000 problems m fix?" This is not a rhetori- ~ 
around February 29, 2000. Many test plans focus on the rollover cal quesfion--I have heard it expressed by Y2K project managers 
from December 31, 1999 m January 1, 2000, where the largest and technical people who have to make difficult decisions about 
number of bugs will be concentrated. Expanding tests to include where to allocate scarce people, money, and machine resources 
Monday, February 28 2000 to Wednesday March 1 2000, or on their Y2K projects. Their argument usuaUy goes "Leap-day 
even to Sunday March 5 2000, can be a hard sdl. bugs are so rare compared to century bugs that, given we can't 

In this article I want to persuade you that the leap day period achieve 100% code coverage in our testing, it makes sense m 
i is a time of serious risk to computer systems, and to discuss al- focus on the century bugs." 

gorithms for dealing correctly with dates over a time span of This is a fair question. In mainframe systems, it is often costly 
more than 4000 years. Although correct implementation of date and time-consuming to arrange for extra testing time at future 

ii~ ~ conversion routines is essential to avoiding the leap day year dates. Writing test plans and building test data sets and test 
2000 bug, there is another reason for looking into the code: it driven is as big a task for a week in February-March as it is for a • ' will lead us into some thoughts on generality, clarity, and effi- week in December-January. If most of the costs are fixed, but the 
ciency in APL coding styles which may be of use to the educa- risks to be avoided are smaller, why spend the money on leap- 
tional community, day tests? 
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The single best answer I can give to this "Why do it?" 
question is "because systems will fail, sometimes catastrophically." 
As computer professionals, we are obliged to minimize our 
clients' exposure to rare risks if these may involve catastrophic 
failures. (Refs 1,2). Leon Kappelman has said "I have noticed an 
unhealthy tendency...in some Year/2000 circles...to belittle or 
criticize anyone who takes seriously Year 2000 risks that can be 
classilied as high magnitude (impact), but low probability (in 
occurrence)."(Pu~fl ~) 

Anyone who doubts that missing a leap day can be catastro- 
phic will profit from reading the description in Time Bomb 2000 
( r~  3) of the New Zealand and Australian aluminum smehers 
which suffered major damage just after midnight on February 29, 
1996, due to crashes in the real-time microcontrollers which 
managed the heating of the crucibles. This well-documented 
example should give us pause, for it shows that millions of 
dollar's of damage can be caused by a simple leap-day bug in pro- 
grams.  

My second answer to "Why do it?" is "because t ~  ~ap-da 3 
problem is less well known than the centur 3 bug." Those who are 
well-informed about calendrical rules and date calculations may 
be surprised how incompletely understood these are, even 
among programmers. If everyone stuck to the "known-good" 
public date utilities in their code, this wouldn't be a problem. 
But, the apparent simplicity of the leap year rules combined with 
the do-it-yourself tendency of APL code cowboys often results 
in hand-tailored leap-year calculations inside of larger functions. 
If the programmer was incompletely informed, bugs result. 

A little knowledge is a dangerous thing 
My favorite way ofconvincing people that the leap-day problem 
is real is to discuss it in a large group of APL professionals. Each 
time I have done so, I have found at least one or two very 
experienced programmers willing to assert that 2000 was not a 
leap year. I guesstimate the incidence of code-cowboyism at 
around 50% in the APL-using coimnunity, which means about 
half of those who were wrong could have embedded bad leap 
year logic into their code. 

And indeed, we have seen hand-coded incorrect leap year 
logic in actual use in large APL systems in the course ofour Year 
2000 work. The incidence is not enormous, but it is high enough 
for me to suggest that many APL applications that meet the 
following criteria will have leap-day problems in 2000 unless 
fixed: 

• The application uses data logic 

• There were no coding standards to encourage use of 
common utilities 

• The application is large 

Given that we know the problem exists and may effect the 
systems we use, and given that funding is at hand anyways for 
code fixing and testing, I assert it is unprofessional not to plan for 
leap year fixing in your Y2K project. 

What are the leap year rules? 
The rules to use are simply stated: 

1. If4000 eveuly divides the year, it is mTt a leap year 

2. If400 evenly divides the year, but 4000 doesn't, it is a leap 
year 

3. If 100 evenly divides the year, but 400 doesn't, it {s not a leap 
year 

4. If4 evenly divides the year, but 100 doesn't, it ~ a leap year 

5. [If I evenly divides the year, but] 4 doesn'% it/s not a leap 
year. 

Beyond the 4000 year rule, simple algorithms don't work-- 
over a period of 20,000 years the length of the year changes 
enough that new rules are required. 

These rules boll down nicely to this line of APL, which will 
yield 1 if"year" is a leap year: 

v/(O~qO00 lO0o.lyea_r)^ 0=400 q=.lyear~Lyear 

These ndes, then, are sufficient to correctly calculate all dates 
between 1 AD to past I0,000 A.D.--a range sufficient for most 
business purposes! Interestingly, most utilities from major APL 
vendors handle rules 2-5 correcdy but ignore ride I, on the 
principle I think that the authors won't be alive when the func- 
tions break. A second reason (to be explored later in this paper) 
is that implementing the 4000 year rule adds slightly to the com- 
putatinnal cost of the utility routines. Both of these reasons are 
similar in nature to the reasoning that got us into the Y2K mess 
in the 70's and 80's. I think that for the sake of completeness and 
professional pride, common date utilities should handle the full 
set of leap year rules. 

Although the unfortunate programmer of the NZ smelter 
code forgot even the simplest 4 year rule, it is not uncommon to 
find people who are unaware of the 100 year rule. Although this 
invalidates calculations for 1900 and 2100, it is quite fortunately 
painless in 2000, since the 4 year rude alone gives the same result 
as applying the full rule set. 

The danger comes from that half-knowledgeable cowboy 
who knew about the 4 and 100 year rules, but not the 400 year 
rule. This cowboy's bronco will buck in the year 2000, asserting 
it is not a leap year,just like 1900 and 2100. This is the error to 
worry about! (Presumably, those who didn't even put in the four 
year rude got caught in 1996...) 
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Where did the rules come from? 

The Julian calendar (still used in Russian Orthodox holidays) 
ran from the time of Jnlius Caesar up to the time of Pope Gregory 
XIII in 1582. TheJulian calendar used only the 4 year rule. As 
the year is a bit less than 365.25 days, (actual length: 365 days, 
5 hours, 48 minutes, 46 seconds) the Julian calendar date slowly 
fell behind the "true" date. The error accumulated at about 3 
days per 400 years. 

The shiR in calendar date versus true date might not have 
been noticed were it not for the Christian religion's dependence 
on the Jewish religion's lunar calendar rules. Easter and Passover 
are linked, and Passover is determined from the night of the first 
full moon of the first month of spring. Thus, the date of the 
spring equinox is important in calculating the date of Easter, the 
central Christian holy day. 

The date of the equinox can be independently determined by 
astronomical measurements. By 1586 these revealed the equinox 
was arriving near March 11, rather than on March 21 as it had in 
325 AD when the Council of Nicaea codified the rules for the 
date of Easter. Pope Gregory called upon a council of wise men 
to devise a correction to the Jnlian calendar, so that the date of 
Easter might be stabilized. The recommendations of this council 
gave rise to the Gregorian calendar_ 

As we worry about the year 2000's computer woes, give a 
thought to poor Pope Gregory. His advisors dictated that 10 
days be added to the calendar date to retrieve the ancient date of 
the equinox. October 4 1582 was followed by October 15. 
Imagine the havoc this would wreak in computer systems today! 
Riots ensued in several parts of the globe as simple folk objected 
to a Papish plot to rob them often days of their lives. The imple- 
mentation date of the Gregorian reforms was delayed until 1752 
in England and 1923 in Greece. 

The Gregorian reform added the 100 and 400 year rules_ 
More accurate measurements have since added the 4000 year 
rule. 

How were the rules determined? 
...a mathematical diversion 

A long tradition, going back to the ancient Greeks and before, 
expressed numbers as sums offraetions. The year length is 365 
plus: 

(t±5 48 46)÷×/t÷24 60 60 
0.242199074074074 

Pope Gregory's approximation was (¼ - Moo) + ¼0o = 0.2425, 
which is not bad--only about .0003 off. Adding the modem cor- 
rection gives: 

-/+4 100 ~00 4000 
0.24225 

which differs from the actual value by 4.4 seconds, or one day in 
19,646 years. Good enough! 

At this point the pragmatic person stops: we know enough 
now. I, however, asked myself"why 4 and 100 and 400? What 
other values could be chosen?" This seemingly pointless ques- 
tion actually helped me improve my understanding of some prac- 
tical algorithms, as we shall see. 

A good starting point is to ask ~'can we express any real 
number between 0 and 1 as the sum of a series in which the 
terms are reciprocals of integers?" Teachers of first-year calculus 
may wish to point out to students the fact that the sum - / -  l n 
is conditionally convergent, and so can be rearranged to con- 
verge to any real number. So we can answer our question with a 
yes if we accept conditionally convergent series. 

If  we ask whether an absolutely convergent series of recipro- 
cals of integers can be found, we can give a constructive answer 
which may chaUenge the student a bit to prove. Let X be a 
number in the open interval (0,1), and define by recursion the 
vector N÷N, L. S++X-+ /+N 

[03 N~epsilon Appro~l X 
[I] n give a vector N of integers such that eps$1on >_ J X - +/+N 
[2] . X • CO,J.) 
[3] N+~O 
[43 :WHIEE (epsllon <[]f) 
[5] X~X-÷-I*N÷N, [-0.5+÷X 
[5] :ENDWHISE 

Question for the student: how fast will the series +/+N 
converge to X? (Proving the minimum rate of  convergence is not 
too hard. Proving the average rate requires more advanced con- 
cepts!) 

Boole rules! 

Try this algorithm with the fractional part of the actual length of 
the year (using the same epsilon the 4000 year rule achieves): 

.00005 Approxl .24219907 
4 -128 

I like to think of this new, revised rule as Boole's reform of the 
calendar. Boole's rules are simple: ffthe year is divisible by 128, 
it's not a leap year, else if it's divisible'by 4, it is. In two terms, 
ideally suited for the digital computer, it converges to the actual 
year length better than the four terms ofthe modified Gregorian 
rule. Furthermore it can be implemented by bit logic on the base 
two representation of the year, making even the C and Assembler 
programmers happy! 

Unfortunately, I have received no reply to my suggestion to 
the Vatican that they decree a switch to Boole's rule in the year 
2048. 

One strike against Boole's rule is that it is oriented to base 2. 
If  only people had four fingers on each hand! I resolved to try 
again with a different algorithm: 
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[0] N~epsilon Approx2 X 
[i] Net0 
[2] ~DBC x epsilon<X÷X-÷-lfN~N,F+X 

.00005 Approx2 .24219907 
5 24 1879 

The careful reader will note that approximation 2 gives a 
series of positive terms which approach X from below, rather 
than sometimes oscillating around X the way the first algorithm 
might. The above rule implies that we have leap days in years 
divisible by 5, 24, and 1879. How many leap days do we have in 
years divisible by 1207 Unfortunately, the 1879 in the result 
convinced me that some kind of rounding offneeds to be applied 
to make the result usable by ordinary "count on the fingers" 
human calculators. 

[0] N~epsilon Approx3 X;last 
[1] N~O o last~l 
[2] ~DEC * epsilon<X~X-÷-l~N~N,last~lastxF+X~last 

.00005 Approx3 .24219907 
5 25 475 10925 

This third approximation is a bit better. It forces the i+1"* 
term in the vector N to be a multiple of the ~h term. If we round 
offthe hst terms ofthis rule we get the rule 5 25 500 5000,  
which is pleasingly simple to evaluate for people and quite 
accurate. Of course, this "rule of fives" always adds leap days 
when the higher order terms kick in, so 1970 had 1 leap day, 
1 9 7 5  had 2, and 2000 would have 3. We truly would be able to 
celebrate the millennium on February 31, 2000, if ouly we used 
this rule! 

This digression shows us one goal Gregory's advisors had-- 
to make sure there was always at most one leap day in a year. 
This is desirable to ensure the calendar never gets more than one 
day out of step with the real world. Thus, we'd like to find a 
vector N such that odd-numbered elements of N are positive and 
even-numbered elements negative, N [ I+'l ] is always a multiple 
of N [ I ] ,  and + / ÷ N  converges to the target X. The negative 
elements of N can be interpreted as "don't have leap years when 
the year is divisible by N [ I ] ", as in "years divisible by 100 are 
not leap years." 

[0] N~epsilon Appro~4 X;last 
[I] n give a vector N of integers such that epsilon _> I X - +/4N 
[2] n where X • (0,1); 0=N[/]IN[i+I] ; 0>N[2*/] ; O<N[I+2*i] 
[3] N~iO o last~l 
[14] N-N,last~(*X).(llast)aLL÷X*last o *DECuepsilon < [X~X-÷last 

• 000005 Approxq .2421S£07 
4 -128 86400 

As a very challenging exercise, ask your students to prove 
how quickly the series delivered by Approx4 converges. As the 
example below where X=l/e shows, the "nice to use" algorithm 

can sometimes be quite slow to converge, compared to the earlier 
algorithms: 

.000005 Approx4 *-i 
2 -6 214 -120 720 -5040 40320 

.000005 Approx3 *-i 
3 30 840 45360 

.000005 Approxl *-i 
3 29 15786 

What have we learned from this digression? We now have a 
computationally sound way to determine leap year rules on any 
planet (exercise for the student: look up day length and year 
length on Mars and determine what Pope Gregory might have 
done had he been Martian). We understand why the alternating 
sum (e.g. - / - 4  100  400  4000)  is preferred to the normal 
sum (e.g. + / + 5  25 S00 5000).  And nowwe are ready to 
recast some of the leap year algorithms that have practical use so 
they are simpler and more Martian-friendly. 

Real code: Is this a leap year? 
An example of this new generality is our "is this a leap year?" 
codelet: 

( xN)+. x0=No. [years 

This lovely little phrase assumes N is a rules vector of the kind 
produced by A p p r o x 4 ,  above, such as N*-14 - 1 0 0  400  
- 4 0 0 0 .  It will work on Mars or Earth, and with any rank for 
y e a r s .  Compare it to the APL2000 LEAPYR  function: 

[0] R~LEAPIR A;OIO 

[1] OI0~i0 

[2] B~((ioop i 0 0 0).300p 0 0 0 0 ,96p i 0 0 o)[400lArl] 

It may take you a moment, but eventually you'll convince your- 
self this is the 14 100  1400 rule set. Like most of the APL2000 
date fimcfions (workspace DATES), it has been optimized for 
performance, not for readability. It is not film to imagine rewriting 
it for Martians, let alone the 4000 year rule. It will, however, he 
faster than our elegant morsel, if you don't need the 4000 year 
rule, and it uses less memory. 

Real code: Julian day numbers 

A common problem of considerable importance in Y2K projects 
is to convert a (Y M D) date triplet (such as is obtained from 
[3~S) into a day number. Day numbers are usually defined as the 
number of days since a fixed date in the past. Astronomers use a 
particular fixed date and call their values "Julian day numbers." 
In Sharp APL the corresponding fimcfion (which uses Year 0 as 
the base) is called " t o j u l " ,  in honor of the astronomical lingo. 
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An inverse function goes from the day number back to a three- 
element Y M D array. In Sharp APL this is called "togreg'. 
The corresponding APL2000 functions are DATEBASE and 
DATEHEP. 

These functions are very useful for determining time spans, 
time comparisons, and for finding new dates. The time span 
between two dates YMD1 and YMD2 is: 

( tojul YMD2)- tojul YMD1 

Tomorrow's date is: 

togreg l+tojul 3pDTS 

To my chagrin, when I first read the code for the public 
versions of these functions, I was utterly baffled. I couldn't tell 
whether they implemented the 100 year rule, the 400 year rule, 
or none of the above! I set out to create simplified functions that 
even I, or a Martian, could understand. 

My algorithm calls for the year to have "origin March 1." 
With this correction made, the number of days up to March 1 of 
" y r "  is the beautifully simple phrase: 

-/k coeffo. ×yr 

where " c o e f f "  is 355 0 0 0 + + 4 100 400 4000. If 
using Boole's rule, c o e f f  would be 355 0 + ÷ 4 128. 
Martians may make their own substitutions. 

Compare the above lucid code to the equivalent part of the 
very efficient APL2000 code from DA_TEBASE (transformed 
somewhat for readability): 

((EEAPYR R)^M<march)-C(LZu14SO97)-(R~OOIY)+(lOOu41~)-4x100IY)+400 

If we have a beauLy contest, I think my code will win! For a 
fair timing comparison with vendor functions I wrote the 
following " t o j u 1 Mars" function: 

[0] dno~tojulMarsymd;yr;mo;day;a;coeff;mlen;DIO;DC~ 
[I] [~T~O o []I0~1 
[2] yr~+/1 00/ymd • mo~+/O I O/ymd o days +/0 0 I/ymd 
[3] coeff~355.25 .01 .0025 .00025 . ÷N~4 I00 400 4000 
[4] mlen~305 337 0 31 51 92 122 153 lay 21~ 245 275 
[5] .mlen~-2~+\O 31 30 31 30 31 31 30 31 30 31 31 
[6] yr~yr+(mo>2)+-2 o *(v/,a~yr<lO0)*12 
[7] yr~yr+ax1OOxk[iTS[2]+lO0 .2-digit yr ~ current century 
[8] 11:dno~-/[coeffo.~yr . the real work is done here 
[9] dno-dno+day+mlen[mo] 

Although it is messy, this function works and is easy to adapt 
to Mars. The rule set used is dearly outlined in line [ 3 ],  while 
the real work (finding the number ofdays from the base to March 
1 of the year specified) is done in line [ 8 ]. Timings show it is in 
some cases faster, in some slower, than the optimized functions 
from APL2000 and Soliton. 

I declare this a victory for Martians everywhere! • 

Julius Caesar I, Pope Gregory 0 

Timings of Julian date functions 
Timings performed using APL+WIN on a Penfum 100 PC. 

Times shown are thousandths of a second per execution. 
Rankings on other architectures will vary. Timings on Sharp 
APL Mainframe showed tojulMars faster than DATEBASE 

The contenders 

If we only need to handle 1901-2099,just use 
the 4 year rule! 

APL2000's optimized version 

Soliton's optimized version for Sharp APL 
version 22 

My Martian a]gor l thm con te s t an t  

Size of argument 

2099 To ju l t t on l y  0.9 0.9 1.0 1.3 2.2 4.7 15.5 

3999 D~EBtlEE 1.5 1.4 1.5 1.9 3.3 8.5 17.3 

3999 To j u l y 2 2  1.2 1.3 1.5 2.1 4.0 13.6 29.7 

20000 TojulMars 1.1 1.l 1.3 2.0 4.5 11.0 27.0 

Comments 
• If you only care about dates up to 2099, the simplest rnle 

(tojul4only) is fastest. 
• The APL+WIN function DA_TEBASE is the winner for large 

arrays on a PC. 
• The function t o j u l M a r s  has the 4000 year rule and is 

fastest for smaller arrays on the PC and for larger arrays on a 
mainframe. 
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